Synthesis of Penicillium chrysogenum acetyl-CoA:isopenicillin N acyltransferase in Hansenula polymorpha: first step towards the introduction of a new metabolic pathway.
نویسندگان
چکیده
The enzyme acetyl-CoA:isopenicillin N acyltransferase (IAT) is a peroxisomal enzyme that mediates the final step of penicillin biosynthesis in the filamentous fungi Penicillium chrysogenum and Aspergillus nidulans. However, the precise role of peroxisomes in penicillin biosynthesis is still not clear. To be able to use the power of yeast genetics to solve the function of peroxisomes in penicillin biosynthesis, we introduced IAT in the yeast Hansenula polymorpha. To this purpose, the P. chrysogenum penDE gene, encoding IAT, was amplified from a cDNA library to eliminate the three introns and introduced in H. polymorpha. In this organism IAT protein was produced as a 40 kDa pre-protein and, as in P. chrysogenum, processed into an 11 and 29 kDa subunit, although the efficiency of processing seemed to be slightly reduced relative to P. chrysogenum. The P. chrysogenum IAT, produced in H. polymorpha, is normally localized in peroxisomes and in cell-free extracts IAT activity could be detected. This is a first step towards the introduction of the penicillin biosynthesis pathway in H. polymorpha.
منابع مشابه
Production of functionally active Penicillium chrysogenum isopenicillin N synthase in the yeast Hansenula polymorpha
BACKGROUND beta-Lactams like penicillin and cephalosporin are among the oldest known antibiotics used against bacterial infections. Industrially, penicillin is produced by the filamentous fungus Penicillium chrysogenum. Our goal is to introduce the entire penicillin biosynthesis pathway into the methylotrophic yeast Hansenula polymorpha. Yeast species have the advantage of being versatile, easy...
متن کاملAn Engineered Yeast Efficiently Secreting Penicillin
This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-...
متن کاملReprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene.
We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host-vector system based on methionine auxotrophy and the H. polymorpha MET6 gene, which encodes a putative cystathionine be...
متن کاملPenicillium chrysogenum Pex5p mediates differential sorting of PTS1 proteins to microbodies of the methylotrophic yeast Hansenula polymorpha.
We have isolated the Penicillium chrysogenum pex5 gene encoding the receptor for microbody matrix proteins containing a type 1 peroxisomal targeting signal (PTS1). Pc-pex5 contains 2 introns and encodes a protein of approximately 75 kDa. P. chrysogenum pex5 disruptants appear to be highly unstable, show poor growth, and are unable to sporulate asexually. Furthermore, pex5 cells mislocalize a fl...
متن کاملAmplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase.
A gene, phl, encoding a phenylacetyl-CoA ligase was cloned from a phage library of Penicillium chrysogenum AS-P-78. The presence of five introns in the phl gene was confirmed by reverse transcriptase-PCR. The phl gene encoded an aryl-CoA ligase closely related to Arabidopsis thaliana 4-coumaroyl-CoA ligase. The Phl protein contained most of the amino acids defining the aryl-CoA (4-coumaroyl-CoA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FEMS yeast research
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2005